Abstract

Phage therapy is the application of bacterial viruses to control and, ideally, to eliminate problematic bacteria from patients. Usually employed are so-called strictly lytic phages, which upon adsorption of a bacterium should give rise to both bacterial death and bacterial lysis. This killing occurs with single-hit kinetics, resulting in relatively simple ways to mathematically model organismal-level, phage-bacterium interactions. Reviewed here are processes of phage therapy as viewed from these simpler mathematical perspectives, starting with phage dosing, continuing through phage adsorption of bacteria, and then considering the potential for phage numbers to be enhanced through in situ phage population growth. Overall, I suggest that a basic working knowledge of the underlying "simple maths" of phage therapy can be helpful toward making dosing decisions and predicting certain outcomes. This especially is during controlled in vitro experimentation but is relevant to thinking about in vivo applications as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call