Abstract
Gold has many unique properties, some of which continue to be uncovered, such as the rich chemistry of gold at the nanoscale. In this study, gold surprises us again by the unusual stability of one-dimensional gold oxide structures on the surface of gold, which enhances in the presence of silver impurities. We employ first-principles calculations to investigate the surface segregation of silver in the presence of atomic-oxygen adsorbates arranged in chains on the Au(321) surface. Such 1D oxide chains have previously been suggested as the most stable form of adsorbed oxygen on gold. Although Ag-O bonds are expected to be generally stronger than Au-O bonds, we show that this does not hold for 1D oxide chains, where Au-O bonds seem to be at least as strong as Ag-O bonds. Remarkably, we find that up to very high surface concentrations of silver, the Ag atoms do not occupy positions within the oxide chain, but prefer locations next to it. Ab initio molecular dynamics simulations support this picture and reveal how oxide chains and silver atoms rearrange on the surface toward a lower-energy configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.