Abstract

We define a fitness concept applicable to structured metapopulations consisting of infinitely many equally coupled patches. In addition, we introduce a more easily calculated quantity Rm that relates to fitness in the same manner as R0 relates to fitness in ordinary population dynamics: the Rm of a mutant is only defined when the resident population dynamics converges to a point equilibrium and Rm is larger (smaller) than 1 if and only if mutant fitness is positive (negative). Rm corresponds to the average number of newborn dispersers resulting from the (on average less than one) local colony founded by a newborn disperser. Efficient algorithms for calculating its numerical value are provided. As an example of the usefulness of these concepts we calculate the evolutionarily stable conditional dispersal strategy for individuals that can account for the local population density in their dispersal decisions. Below a threshold density x, at which staying and leaving are equality profitable, everybody should stay and above x everybody should leave, where profitability is measured as the mean number of dispersers produced through lines of descent consisting of non-dispersers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.