Abstract

AbstractEarth's cratonic mantle lithosphere is distinguished by high seismic wave velocities that extend to depths greater than 200 km, but recent studies disagree on the magnitude and depth extent of the velocity gradient at their lower boundary. Here we analyze and model the frequency dependence of Sp waves to constrain the lithosphere‐asthenosphere velocity gradient at long‐lived stations on cratons in North America, Africa, Australia, and Eurasia. Beneath 33 of 44 stations, negative velocity gradients at depths greater than 150 km are less than a 2–3% velocity drop distributed over more than 80 km. In these regions the base of the typical cratonic lithosphere is gradual enough to be explained by a thermal transition. Vertically sharper lithosphere‐asthenosphere transitions are permitted beneath 11 stations, but these zones are spatially intermittent. These results demonstrate that lithosphere‐asthenosphere viscosity contrasts and coupling fundamentally differ between cratons and younger continents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.