Abstract
All government documents that are released to the public must first be manually reviewed to identify and protect any sensitive information, e.g. confidential information. However, the unassisted manual sensitivity review of born-digital documents is not practical due to, for example, the volume of documents that are created. Previous work has shown that sensitivity classification can be effective for predicting if a document contains sensitive information. However, since all of the released documents must be manually reviewed, it is important to know if sensitivity classification can assist sensitivity reviewers in making their sensitivity judgements. Hence, in this paper, we conduct a digital sensitivity review user study, to investigate if the accuracy of sensitivity classification effects the number of documents that a reviewer correctly judges to be sensitive or not (reviewer accuracy) and the time that it takes to sensitivity review a document (reviewing speed). Our results show that providing reviewers with sensitivity classification predictions, from a classifier that achieves 0.7 Balanced Accuracy, results in a 38% increase in mean reviewer accuracy and an increase of 72% in mean reviewing speeds, compared to when reviewers are not provided with predictions. Overall, our findings demonstrate that sensitivity classification is a viable technology for assisting with the sensitivity review of born-digital government documents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.