Abstract

In this paper, robustness of non-contiguous orthogonal frequency division multiplexing (NC-OFDM) transmissions is investigated and contrasted to OFDM transmissions for fending off signal exploitation attacks. In contrast to ODFM transmissions, NC-OFDM transmissions take place over a subset of active sub carriers to either avoid incumbent transmissions or for strategic considerations. A point-to-point communication system is considered in this paper in the presence of an adversary (exploiter) that aims to infer transmission parameters (e.g., the subset of active sub carriers and duration of the signal) using a deep neural network (DNN). This method has been proposed since the existing methods for exploitation, which are based on cyclostationary analysis, have been shown to have limited success in NC-OFDM systems. A good estimation of the transmission parameters allows the adversary to transmit spurious data and attack the legitimate receiver. Simulation results show that the DNN can infer the transmit parameters of OFDM signals with very good accuracy. However, NC-OFDM with fully random selection of active sub carriers makes it difficult for the adversary to exploit the waveform and thus for the receiver to be affected by the spurious data. Moreover, the more structured the set of active subcarriers selected by the transmitter is, the easier it is for the adversary to infer the transmission parameters and attack the receiver using a DNN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call