Abstract

We study how heterogeneous degree distributions and large-scale collective cooperation in social networks emerge in complex homogeneous systems by a simple local rule: learning from the best in both strategy selections and linking choices. The prisoner's dilemma game is used as the local dynamics. We show that the social structure may evolve into single-scale, broad-scale, and scale-free (SF) degree distributions for different control parameters. In particular, in a relatively strong-selfish parameter region the SF property can be self-organized in social networks by dynamic evolutions and these SF structures help the whole node community to reach a high level of cooperation under the poor condition of a high selfish intention of individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call