Abstract

Abstract Gravitational wave (GW) predictions of cosmological phase transitions are almost invariably evaluated at either the nucleation or percolation temperature. We investigate the effect of the transition temperature choice on GW predictions, for phase transitions with weak, intermediate and strong supercooling. We find that the peak amplitude of the GW signal varies by a factor of a few for weakly supercooled phase transitions, and by an order of magnitude for strongly supercooled phase transitions. The variation in amplitude for even weakly supercooled phase transitions can be several orders of magnitude if one uses the mean bubble separation, while the variation is milder if one uses the mean bubble radius instead. We also investigate the impact of various approximations used in GW predictions. Many of these approximations introduce at least a 10% error in the GW signal, with others introducing an error of over an order of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.