Abstract
ObjectiveTailored digital health programs can promote positive health-related lifestyle changes and have been shown to be (cost) effective in trials. However, such programs are used suboptimally. New approaches are needed to optimise the use of these programs. This paper illustrates the potential of recommender systems to support and enhance computer-tailored digital health interventions. The aim is threefold, to explore: (1) how recommender systems provide health recommendations, (2) to what extent recommender systems incorporate theoretical models and (3) how the use of recommender systems may enhance the usage of computer-tailored interventions.MethodsA scoping review was conducted, using MEDLINE and ScienceDirect, to identify health recommender systems reported in studies between January 2007 and December 2017. Information was subsequently extracted to understand the potential benefits of recommender systems for computer-tailored digital health programs. Titles and abstracts of 1184 studies were screened for the full-text screening, in which two reviewers independently selected articles and systematically extracted data using a predefined extraction form.ResultsA total of 26 articles were included for data extraction. General characteristics were reported, with eight studies reporting hybrid filtering. A description of how each recommender system provides a recommendation is described; the majority of recommender systems used messages as recommendation. We identified the potential effects of recommender systems on efficiency, effectiveness, trustworthiness and enjoyment of the digital health program.ConclusionsIncorporating a collaborative method with demographic filtering as a second step to knowledge-based filtering could potentially add value to traditional tailoring with regard to enhancing the user experience. This study illustrates how recommender systems, especially hybrid programs, may have the potential to bring tailored digital health forward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.