Abstract

Abstract We investigated the predictability (forecast skill) of short-term droughts using the Palmer drought severity index (PDSI). We incorporated a sophisticated data training (of decadal range) to evaluate the improvement of forecast skill of short-term droughts (3 months). We investigated whether the data training of the synthetic North American Multi-Model Ensemble (NMME) climate has some influence on enhancing short-term drought predictability. The central elements are the merged information among PDSI and NMME with two postprocessing techniques. 1) The bias correction–spatial disaggregation (BC-SD) method improves spatial resolution by using a refined soil information introduced in the available water capacity of the PDSI calculation to assess water deficit that better estimates drought variability. 2) The ensemble model output statistic (EMOS) approach includes systematically trained decadal information of the multimodel ensemble simulations. Skill of drought forecasting improves when using EMOS, but BC-SD does not increase the forecast skill when compared with an analysis using BC (low spatial resolution). This study suggests that predictability forecast of drought (PDSI) can be extended without any change in the core dynamics of the model but instead by using the sophisticated EMOS postprocessing technique. We pointed out that using NMME without any postprocessing is of limited use in the suite of model variations of the NMME, at least for the U.S. Northeast. From our analysis, 1 month is the most extended range we should expect, which is below the range of the seasonal scale presented with EMOS (2 months). Thus, we propose a new design of drought forecasts that explicitly includes the multimodel ensemble signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.