Abstract

BackgroundMicrotine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling.Methodology/Principal FindingsBy using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations.SignificanceThere is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics.

Highlights

  • Microtine populations in Fennoscandia displays a wide range of population dynamic patterns, shifting along a north-south gradient from persistent multi-annual fluctuations of 3–5 years in the north, to stable populations in the south [1,2,3,4,5]

  • Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics

  • Analysis of time series data of rodents in Fennoscandia have shown that the latitudinal gradient in microtine dynamics is caused by an underlying cline in the strength of direct density dependence [6,7,8]

Read more

Summary

Introduction

Microtine populations in Fennoscandia displays a wide range of population dynamic patterns, shifting along a north-south gradient from persistent multi-annual fluctuations of 3–5 years in the north, to stable populations in the south [1,2,3,4,5]. Analysis of time series data of rodents in Fennoscandia have shown that the latitudinal gradient in microtine dynamics is caused by an underlying cline in the strength of direct density dependence [6,7,8]. Delayed density dependence refers to the time-delayed regulatory effect of past population densities on the reproduction and survival of individuals. It is often interpreted as a sign of trophic interactions, because lagged feedback can readily arise from specialist predator-prey or consumer-resource interactions [18,19]. Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The distinction is here attempted using realistic agent-based modelling

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call