Abstract

We derive the observable gravitational wave (GW) peak frequency ($f$) distribution of binary black holes (BBHs) that currently reside inside their globular clusters (GCs), with and without 2.5 Post-Newtonian (2.5PN) effects included in the dynamical evolution of the BBHs. Recent Newtonian studies have reported that a notable number of nearby non-merging BBHs, i.e. those BBHs that are expected to undergo further dynamical interactions before merger, in GCs are likely to be observable by LISA. However, our 2.5PN calculations show that the distribution of $\log f$ for the non-merging BBH population above $\sim 10^{-3.5}$ Hz scales as $f^{-34/9}$ instead of the $f^{-2/3}$ scaling found in the Newtonian case. This leads to an approximately two-orders-of-magnitude reduction in the expected number of GW sources at $\sim 10^{-3}$ Hz, which lead us to conclude that observing nearby BBHs with LISA is not as likely as has been claimed in the recent literature. In fact, our results suggest that it might be more likely that LISA detects the population of BBHs that will merge before undergoing further interactions. This interestingly suggests that the BBH merger rate derived from LIGO can be used to forecast the number of nearby LISA sources, as well as providing insight into the fraction of BBH mergers forming in GCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call