Abstract

Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in vibronic bands, indicates reline, the DES composed of urea as the hydrogen bond donor, to be significantly more dipolar than the other three DESs. Response of pyrene-1-carboxaldehyde, a polarity probe based on inversion of n-π* and π-π* states, hints at maline to be the most dipolar of the four DESs. The molecular structure of the H-bond donor in a DES clearly controls the dipolarity afforded by the DES. H-bonding and other specific solute-solvent interactions are found to play an important role in solvatochromic probe behavior for the four DESs. The cybotactic region of a probe dissolved in a DES affords information on the polarity of the DES towards solutes of similar nature and functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.