Abstract

The slipperiness of ice is well known while, for ice skating, its mechanism still needs further investigation, where the complex interactions including the thermal conduction of the skate—meltwater—ice system, the ploughing and the frictional melting of ice to the friction force are still unclear. This study presents a theoretical framework and a simplified analytical solution to unveil the friction mechanism when a curved skate sliding on ice. The theory is validated by experiments and the effects of these various factors, including the sliding velocity, the ice temperature, the supporting weight, and the geometry of the skate blade to the friction are revealed in detail. This study finds that the contribution of friction force from the ploughing deformation through skate indentation and that from the fluid friction through the shear motion of the meltwater layer is comparable with each other, which thus clarifies how the ploughing deformation of the ice substrate together with its frictional melting regulates the friction during skating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.