Abstract

This study used computational fluid dynamics (CFD) models, coupling with a standard k-ε model based on the Reynolds-averaged Navier-Stokes (RANS) approach and a revised generalized drift flux model, to investigate effects of outdoor trees on indoor PM1.0, PM2.5, and PM10 dispersion in a naturally ventilated auditorium. Crown volume coverage (CVC) was introduced to quantify outdoor trees. Simulations were performed on various CVCs, oncoming wind velocities and window opening sizes (wall porosities were 3.5 and 7.0%, respectively, for half and fully opened windows). The results were as follows: (1) A vortex formed inside the auditorium in the baseline scenario, and the airflow recirculation created a well-mixed zone with little variation in particle concentrations. There was a noticeable decrease in indoor PM10 with the increasing distance from the inlet boundary due to turbulent diffusion. (2) Assuming that pollution sources were diluted through the inlet, average indoor particle concentrations rose exponentially with increasing oncoming wind speed. PM10 changed most significantly due to turbulent diffusion and surface deposition reduction intensified by the increased wind velocity. (3) Increasing the window opening improved indoor cross-ventilation, thus reducing indoor particle concentrations. (4) When 2.87 m3/m2 ≤ CVC ≤ 4.73 m3/m2, indoor PM2.5 could meet requirements of the World Health Organization’s air quality guidelines (IT-3) for 24-hour mean concentrations; and (5) average indoor particle concentrations had positive correlations with natural ventilation rates (R2 = 0.9085, 0.961, 0.9683 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 3.5%; R2 = 0.9158, 0.9734, 0.976 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 7.0%).

Highlights

  • Rapid urbanization, urban transportation, factory production and domestic biomass combustion have caused a dramatic decline in the quality of urban environments [1,2]

  • The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm with the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) discretization scheme was applied to all governing equations

  • This demonstrated that the wind velocity increases dramatically at the turn of the windward wall

Read more

Summary

Introduction

Urban transportation, factory production and domestic biomass combustion have caused a dramatic decline in the quality of urban environments [1,2]. Atmospheric particles such as PM1.0 , PM2.5 and PM10 have turned into the most intractable problems of urban air pollution. Of their time indoors, indoor air quality is closely related to human health. Understanding relationships between indoor and outdoor air pollution is critical to better characterize ambient particulate matter exposure and health effects [7,8]. It is well known that vegetation, especially trees, decreases atmospheric particles by capture, filtering, precipitation and turbulent diffusivity [9].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call