Abstract

We analyse the response of an arbitrarily accelerated Unruh-DeWitt detector coupled to a massless scalar field in Minkowski spacetimes of dimensions up to six, working within first-order perturbation theory and assuming a smooth switch-on and switch-off. We express the total transition probability as a manifestly finite and regulator-free integral formula. In the sharp switching limit, the transition probability diverges in dimensions greater than three but the transition rate remains finite up to dimension five. In dimension six, the transition rate remains finite in the sharp switching limit for trajectories of constant scalar proper acceleration, including all stationary trajectories, but it diverges for generic trajectories. The divergence of the transition rate in six dimensions suggests that global embedding spacetime methods for investigating detector response in curved spacetime may have limited validity for generic trajectories when the embedding spacetime has dimension higher than five.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.