Abstract
While nitrogen (N) deposition and over-fertilization enrich N in soil, it is unclear how it impacts soil organic carbon (SOC) transformation at the aggregate scale. Herein, a 90-day study reveals the transformation mechanisms of SOC in soil aggregates under nitrate and ammonium enrichment conditions. Results showed that nitrate treatment (NT) and ammonium treatment (AT) significantly increased SOC content by 15.6 % and 18.9 %, respectively. In addition, NT increased SOC accrual in large macro-aggregates (LMA), while AT increased SOC accrual in small macro-aggregates (SMA) and micro-aggregates (MA). Further analysis of pyrolysis products showed that N enrichment drove the transformation of labile soil organic matter (SOM) composition into recalcitrant SOM, with polysaccharides declining from 19–30 % to 2–13 %, while lipids rose from 18–27 % to 33–45 %. LMA and SMA contained more aromatic compounds than MA. This is linked to the inhibition of the expression of C degradation function genes, while almost all genes encoding SOC degradation are down-regulated under N enrichment. In the meantime, NT increased the abundance of genes encoding the degradation of N-containing compounds in LMA. Moreover, NO3− enrichment exerted a higher inhibitory effect on labile SOC degradation while NH4+ enrichment substantially inhibited recalcitrant SOC. Finally, Random Forest analysis confirmed that N enrichment elevated the importance of N-containing compounds' metabolism, which diminished when the size of soil aggregates decreased. In contrast, the importance of genes encoding saccharides and cellulose metabolism increased in smaller aggregates. This study highlights that both N type and aggregate size were determining factors in shaping SOC transformation in the N enrichment process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.