Abstract
ABSTRACTThe 2017 Event Horizon Telescope (EHT) observations of M87* detected a ring-shaped feature ∼40 μas in diameter, consistent with the event horizon scale of a black hole of the expected mass. The thickness of this ring, however, proved difficult to measure, despite being an important parameter for constraining the observational appearance. In the first paper of this series, we asked whether the width of the ring was sensitive to the choice of likelihood function used to compare observed closure phases and closure amplitudes to model predictions. In this paper, we investigate whether the ring width is robust to changes in the model itself. We construct a more realistic geometric model with two new features: an adjustable radial falloff in brightness, and a secondary ‘photon ring’ component in addition to the primary annulus. This thin, secondary ring is predicted by gravitational lensing for any black hole with an optically thin accretion flow. Analysing the data using the new model, we find that the primary annulus remains narrow (fractional width ≤ 0.25) even with the added model freedom. This provides further evidence in favour of a narrow ring for the true sky appearance of M87*, a surprising feature that, if confirmed, would demand theoretical explanation. Comparing the Bayesian evidence for models with and without a secondary ring, we find no evidence for the presence of a lensed photon ring in the 2017 observations. However, the techniques we introduce may prove useful for future observations with a larger and more sensitive array.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.