Abstract

Single domain cubic ε-Co nanocrystals are synthesized via a high-temperature thermal decomposition of cobalt carbonyl in the presence of oleic acid and trioctylphosphane oxide (TOPO). The ε-Co nanocrystals are characterized by a low size distribution (σ < 7%) and the average diameter is tuned from 7 nm to 9 nm by tailoring the molar ratio of the surfactants oleic acid and TOPO. Moreover, we have demonstrated the self-assembly of ε-Co nanocrystals in highly ordered three-dimensional (3D) face-centered cubic (fcc) structures called supracrystals. The layer-by-layer organization of these building blocks is achieved through solvent evaporation. Simultaneously, we produce. with the same ε-Co nanocrystals, disordered (amorphous) films. We demonstrate the presence of large interparticle magnetic interactions in the supracrystals by comparing their magnetic properties with the diluted samples. Then, by a detailed comparison of their collective magnetic properties with partially disordered films, the significant differences due to the change in anisotropy and distribution of dipolar interaction energies in the two systems are presented. This is attributed to the orientational and spatial ordering of single domain ε-Co nanocrystals markedly changing between ordered and disordered assemblies. The thermal evolution of the magnetization in ZFC/FC procedure presents three characteristic temperatures representing the blocking, the irreversibility and the maximum of Zeeman coupling temperatures. They are all affected by the presence of the order in supracrystals and they present different evolution trends as a function of nanoparticles size. While the variations of reduced remanent magnetizations in both condensed series are in good agreement with the previous theoretical calculations, the coercive fields present opposite evolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call