Abstract

BackgroundFollowing in the vein of studies that concluded that music training resulted in plastic changes in Einstein’s cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has also been shown to be of significant therapeutic value in neurological disorders. Within this framework of music training-induced enhancement of central executive attentional processes, the purpose of this article is to argue that: (1) The foundational basis of the central executive begins in infancy as attentional control during the establishment of working memory, (2) In accordance with Akshoomoff, Courchesne and Townsend’s and Leggio and Molinari’s cerebellar sequence detection and prediction models, the rigors of volitional control demands of music training can enhance voluntary manipulation of information in thought and movement, (3) The music training-enhanced blending of cerebellar internal models in working memory as can be experienced as intuition in scientific discovery (as Einstein often indicated) or, equally, as moments of therapeutic advancement toward goals in the development of voluntary control in neurological disorders, and (4) The blending of internal models as in (3) thus provides a mechanism by which music training enhances central executive processes in working memory that can lead to scientific discovery and improved therapeutic outcomes in neurological disorders.ResultsWithin the framework of Leggio and Molinari’s cerebellar sequence detection model, it is determined that intuitive steps forward that occur in both scientific discovery and during therapy in those with neurological disorders operate according to the same mechanism of adaptive error-driven blending of cerebellar internal models.ConclusionIt is concluded that the entire framework of the central executive structure of working memory is a product of the cerebrocerebellar system which can, through the learning of internal models, incorporate the multi-dimensional rigor and volitional-control demands of music training and, thereby, enhance voluntary control. It is further concluded that this cerebrocerebellar view of the music training-induced enhancement of central executive control in working memory provides a needed mechanism to explain both the highest level of scientific discovery and the efficacy of music training in the remediation of neurological impairments.

Highlights

  • Following in the vein of studies that concluded that music training resulted in plastic changes in Einstein’s cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has been shown to be of significant therapeutic value in neurological disorders

  • The preserved brain of Albert Einstein has been extensively studied on the premise that unique neuroanatomical features of his cerebral cortex may reveal the neural substrates of his exceptional mental abilities [1,2,3]

  • Hyde, Lerch, Norton, Norton, Forgeard, Winner, Evans and Schlaug [6], Schlaug, [7] and Schlaug, Forgeard, Norton, Norton and Winner [8] concluded that music training does produce significant, lifelong changes in the neuroanatomy of the cerebral cortex, including in the corpus callosum, and that these changes are most pronounced when training begins in early childhood

Read more

Summary

Introduction

Following in the vein of studies that concluded that music training resulted in plastic changes in Einstein’s cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has been shown to be of significant therapeutic value in neurological disorders. The preserved brain of Albert Einstein has been extensively studied on the premise that unique neuroanatomical features of his cerebral cortex may reveal the neural substrates of his exceptional mental abilities [1,2,3]. These studies found various neuroanatomical differences in Einstein’s brain as compared to ordinary controls. Schlaug et al [8] were quite clear on this point, “Our results show that it is intense musical experience-practice, not preexisting differences [italics added], that is responsible for the larger anterior CC [corpus callosum] area found in professional adult musicians” (p. 205)

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call