Abstract

Although water resource shortage is closely connected with coal-based electricity generation, relevant water footprint analyses remain limited. This study aims to address this limitation by conducting a water footprint analysis of coal-based electricity generation in China for the first time to inform decision-makers about how freshwater consumption and wastewater discharge can be reduced. In China, 1 kWh of electricity supply obtained 1.78 × 10−3 m3 of gray water footprint in 2015, and the value is 1.3 times the blue water footprint score of 1.35 × 10−3 m3/kWh. Although water footprint of 1 kWh of electricity supply decreased, the national total gray water footprint increased significantly from 2006 to 2015 with increase in power generating capacity. An opposite trend was observed for blue water footprint. Indirect processes dominated the influence of gray water footprint, whereas direct freshwater consumption contributed 63.6% to blue water footprint. Ameliorating key processes, including transportation, direct freshwater consumption, direct air emissions, and coal washing could thus bring substantial environmental benefits. Moreover, phosphorus, mercury, hexavalent chromium, arsenic, COD, and BOD5 were key substances of gray water footprint. Results indicated that the combination of railway and water transportation should be prioritized. The targeted transition toward high coal washing rate and pithead power plant development provides a possibility to relieve environmental burdens, but constraints on water resources in coal production sites have to be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.