Abstract

In this paper, we consider a wideband cognitive radio network (CRN) which can simultaneously sense multiple narrowband channels and thus aggregate the perceived available channels for transmission. We study the problem of designing the optimal spectrum sensing time and power allocation schemes so as to maximize the average achievable throughput of the CRN subject to the constraints of probability of detection and the total transmit power. The optimal sensing time and power allocation strategies are developed under two different total power constraints, namely, instantaneous power constraint and average power constraint. Finally, numerical results show that, under both cases, for a CRN with three 6 MHz channels, if the frame duration is 100 ms and the target probability of detection is 90% for the worst case signal-to-noise ratio of primary users being -12 dB, -15 dB and -20 dB, respectively, the optimal sensing time is around 6 ms and it is almost insensitive to the total transmit power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call