Abstract

Regression discontinuity designs (RDD) are widely used in the social sciences to estimate causal effects from observational data. Scholars can choose from a range of methods that implement different RDD estimators, but there is a paucity of research on the performance of these different estimators in recovering experimental benchmarks. Leveraging exact ties in local elections in Colombia and Finland, which are resolved by random coin toss, we find that RDD estimation using bias-correction and robust inference (CCT) performs better in replicating experimental estimates of the individual incumbency advantage than local linear regression with conventional inference (LLR). We assess the generalizability of our results by estimating incumbency effects across different subsamples, and in other countries. We find that CCT consistently comes closer to the experimental benchmark, produces smaller estimates than LLR, and that incumbency effects are highly heterogeneous, both in magnitude and sign, across countries with similar open-list PR systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.