Abstract

Traditional recommendation systems (RS's) aim to recommend items that are relevant to the user's interest. Unfortunately, the recommended items will soon become too familiar to the user and hence fail to arouse her interest. Discovery-oriented recommendation systems (DORS's) complement accuracy with discover utilities (DU's) such as novelty and diversity and optimize the tradeoff between the DU's and accuracy of the recommendations. Unfortunately, DORS's ignore an important fact that different users have different appetites for DU's. That is, highly curious users can accept highly novel and diversified recommendations whereas conservative users would behave in the opposite manner. In this paper, we propose a curiosity-based recommendation system (CBRS) framework which generates recommendations with a personalized amount of DU's to fit the user's curiosity level. The major contribution of this paper is a computational model of user curiosity, called Probabilistic Curiosity Model (PCM), which is based on the curiosity arousal theory and Wundt curve in psychology research. In PCM, we model a user's curiosity with a curiosity distribution function learnt from the user's access history and compute a curiousness score for each item representing how curious the user is about the item. CBRS then selects items which are both relevant and have high curiousness score, bounded by the constraint that the amount of DU's fits the user's DU appetite. We use joint optimization and co-factorization approaches to incorporate the curiosity signal into the recommendations. Extensive experiments have been performed to evaluate the performance of CBRS against the baselines using a music dataset from last.fm. The results show that compared to the baselines CBRS not only provides more personalized recommendations that adapt to the user's curiosity level but also improves the recommendation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.