Abstract
Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.
Highlights
Rapid urbanization and the ongoing conversion of landscapes from natural habitats to industrial, commercial, and residential land uses to support a growing human population remain the most salient threats to natural ecosystems [1,2,3]
There was a significant effect of treatment on several habitat and water quality parameters (Table 3)
These results are not surprising given the number of rain gardens and rain barrels and the capacity of these stormwater devices relative to the impervious surfaces in the catchment
Summary
Rapid urbanization and the ongoing conversion of landscapes from natural habitats to industrial, commercial, and residential land uses to support a growing human population remain the most salient threats to natural ecosystems [1,2,3]. In most urban and suburban areas, untreated stormwater runoff from impervious surfaces is typically routed directly into rivers, lakes, and oceans. This conventional design of urban drainage systems reflects concerns about human health and safety, but largely ignores threats to aquatic ecosystem health that stem from stormwater runoff [5,6]. The urban stream syndrome describes changes in stream ecosystems associated with urbanization, a subject that has been increasingly studied in the last few decades (see reviews by [7,8,9]) These changes primarily arise from stormwater runoff from impervious cover— impervious cover that is directly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.