Abstract

In data-processing pipelines, upstream steps can influence downstream processes because of their sequential nature. Among these data-processing steps, batch effect (BE) correction (BEC) and missing value imputation (MVI) are crucial for ensuring data suitability for advanced modeling and reducing the likelihood of false discoveries. Although BEC-MVI interactions are not well studied, they are ultimately interdependent. Batch sensitization can improve the quality of MVI. Conversely, accounting for missingness also improves proper BE estimation in BEC. Here, we discuss how BEC and MVI are interconnected and interdependent. We show how batch sensitization can improve any MVI and bring attention to the idea of BE-associated missing values (BEAMs). Finally, we discuss how batch-class imbalance problems can be mitigated by borrowing ideas from machine learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.