Abstract
Recent innovations in the area of electrochemical micromachining (μECM) have created a unique opportunity for fabricating microproducts in the micron scale. A significant constraint in attaining improved machining effectiveness in μECM applications is that of achieving the correct microtool geometry for a specified workpiece profile. This study focuses on the influences of microtool dimension on machining characteristics of electrochemical microdrilling on nickel plate. During microtool fabrication, tungsten microshafts are electrochemically etched to make desired cylindrical microtools of different lengths and diameters to investigate the effects of tool dimension on electrochemical micromachining. The shape and size of the fabricated microholes, material removal rate, machining time, and taper angle formed in the fabricated microholes are considered as response factors. After machining, the shape and size of microdrilled holes are measured and compared to tool geometry. From the experiment, it is found that the material removal rate, machining time, and the size of fabricated microhole are significantly influenced by the microtool dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.