Abstract

Mixed states of a quantum system, represented by density operators, can be decomposed as a statistical mixture of pure states in a number of ways where each decomposition can be viewed as a different preparation recipe. However the fact that the density matrix contains full information about the ensemble makes it impossible to estimate the preparation basis for the quantum system. Here we present a measurement scheme to (seemingly) improve the performance of unsharp measurements. We argue that in some situations this scheme is capable of providing statistics from a single copy of the quantum system, thus making it possible to perform state tomography from a single copy. One of the byproduct of the scheme is a way to distinguish between different preparation methods used to prepare the state of the quantum system. However, our numerical simulations disagree with our intuitive predictions. We show that a counter-intuitive property of a biased classical random walk is responsible for the proposed mechanism not working.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.