Abstract

The role of mathematics in scientific practice is too readily relegated to that of formulating equations that model or describe what is being investigated, and then finding solutions to those equations. I survey the role of mathematics in: 1. Exact solutions of differential equations, especially conformal mapping; and 2. Simulations of solutions to differential equations via numerical methods and via agent-based models; and 3. The use of experimental models to solve equations (a) via physical analogies based on similarity of the form of the equations, such as Prandtl’s soap-film method, and (b) the method of physically similar systems. Two major themes emerge: First, the role of mathematics in science is not well described by deduction from axioms, although it generally involves deductive reasoning. Creative leaps, the integration of experimental or observational evidence, synthesis of ideas from different areas of mathematics, and insight regarding analogous forms are required to find solutions to equations. Second, methods that involve mappings or transformations are in use in disparate contexts, from the purely mathematical context of conformal mapping where it is mathematical objects that are mapped, to the use of concrete physical experimental models, where one concrete thing is shown to correspond to another.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call