Abstract

We study the combinatorial function $L(k,q),$ the maximum number of nonzero weights a linear code of dimension $k$ over $\F_q$ can have. We determine it completely for $q=2,$ and for $k=2,$ and provide upper and lower bounds in the general case when both $k$ and $q$ are $\ge 3.$ A refinement $L(n,k,q),$ as well as nonlinear analogues $N(M,q)$ and $N(n,M,q),$ are also introduced and studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.