Abstract

The number of vibration response sensors required for structural damage detection andprecise localization on a continuous structural topology is investigated. For damage detection thestate–of–the–art of vibration based methods need a required number of sensors q that may be “low”compared to the number of structural modes m, that is q << m. Yet, the opposite is generally suggestedfor precise damage localization, that is q > m. In this study the hypothesis that a “low” numberof vibration response sensors, q << m, may, under certain conditions, suffice for precise damage localization,is postulated. This hypothesis is “proven” experimentally by demonstrating that preciselocalization is indeed possible using a single vibration response sensor and an advanced StructuralHealth Monitoring methodology on a laboratory 3D truss structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.