Abstract

Vertical symbiont transmission is among the most pivotal processes for maintenance of symbiotic associations. However, it is poorly understood whether and how the levels of resource allocation and investment upon vertical transmission are regulated. The stinkbug Megacopta punctatissima is obligatorily associated with the gut symbiotic bacterium 'Candidatus Ishikawaella capsulata', whose transmission is mediated by a unique mechanism called 'symbiont capsule'. We investigated the population dynamics of the symbiont during vertical transmission in the host-symbiont mutualism. The stinkbug mothers produced one capsule for around 3.6 eggs irrespective of clutch size, suggesting a strict maternal control over symbiont supply for the offspring. However, experimental manipulation of egg/capsule ratios revealed that one capsule is sufficient for symbiont transmission to six nymphs. Quantitative polymerase chain reaction analyses demonstrated that a capsule contains 1.2 x 10(8) symbionts, a newborn nymph possesses 2 x 10(7) symbionts from a capsule, and thus one capsule certainly contains a sufficient amount of symbiont cells for six nymphs. These results indicated that the stinkbug mothers produce 1.7 times more symbiont capsules than needed. The newborn nymphs consistently harboured around 2 x 10(7) symbionts, also suggesting a nymphal control over symbiont transmission. The threshold symbiont titre minimally needed for successful vertical transmission was estimated to be 1.9 x 10(6) symbionts, which is only 1/10 of the actual symbiont titre detected in a newborn nymph. These results illuminate several ecological factors that may be relevant to parental and offspring controls over symbiotic resource allocation through host insect generations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call