Abstract
It is well known in the theory of Kolmogorov complexity that most strings cannot be compressed; more precisely, only exponentially few (Θ (2 n − m )) binary strings of length n can be compressed by m bits. This paper extends the ‘incompressibility’ property of Kolmogorov complexity to the ‘unpredictability’ property of predictive complexity. The ‘unpredictability’ property states that predictive complexity (defined as the loss suffered by a universal prediction algorithm working infinitely long) of most strings is close to a trivial upper bound (the loss suffered by a trivial minimax constant prediction strategy). We show that only exponentially few strings can be successfully predicted and find the base of the exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.