Abstract

Most anti-aging therapeutics are designed to target single molecules, single molecular mechanisms, or single cell types. Yet, to produce a substantial lifespan extension, these interventions would need to act promiscuously and delay the onset of many or all causes of death. In invertebrate models, several molecular-level interventions are known to act this way, yet their downstream action on multiple causes of death remains poorly understood. Recently, we identified a strong mathematical constraint in the way that many different interventions in aging alter all-cause mortality in the nematode Caenorhabditis elegans. Interventions including suppression of IGF/insulin signaling, disruption of the hsf-1 heat shock factor and the hif-1 hypoxia-inducible factor, as well as changes in diet and body temperature, all produce a temporal scaling of lifespan. This temporal scaling suggests a common physiologic path through which diverse, evolutionary-conserved, molecular mechanisms can simultaneously influence all causes of death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.