Abstract

An estimate of the number of deleterious mutations in the human genome is made using data on the frequency of rare recessive disease in cousin marriages and in the general population. Sexual reproduction ensures that deleterious mutations are distributed at random in zygotes with an approximate Poisson distribution. The mean of this distribution is the sum of the mean number of deleterious mutations in zygotes which contribute to the next generation (Y) and the mean number of new mutations which arise in each human generation (X). The estimates are that X is between 1 and 2.6 and Y is between 12 and 32. A mathematical model based on redundancy is then used to predict how zygote survival will vary with the number of deleterious mutations. The form of this relationship is the same as that seen in experiments on cell survival following radiation-induced mutational damage and this provides independent support for this theoretical approach. The zygotes that survive to contribute to the next generation have a skewed distribution with a mean of Y. It is argued that the number of deleterious mutations in the genome is an important variable in health and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.