Abstract

Finding the number of clusters in a data set is considered as one of the fundamental problems in cluster analysis. This paper integrates maximum clustering similarity (MCS), for finding the optimal number of clusters, into R statistical software through the package MCSim. The similarity between the two clustering methods is calculated at the same number of clusters, using Rand [Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66:846–850.] and Jaccard [The distribution of the flora of the alpine zone. New Phytologist. 1912;11:37–50.] indices, corrected for chance agreement. The number of clusters at which the index attains its maximum with most frequency is a candidate for the optimal number of clusters. Unlike other criteria, MCS can be used with circular data. Seven clustering algorithms, existing in R, are implemented in MCSim. A graph of the number of clusters vs. clusters similarity using corrected similarity indices is produced. Values of the similarity indices and a clustering tree (dendrogram) are produced. Several examples including simulated, real, and circular data sets are presented to show how MCSim successfully works in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.