Abstract

To study the capabilities and limitations of Raman optical activity, (-)-(M)σ-[10]helicene and (-)-(M)σ-[4]helicene serve as scaffold molecules on which new chiral centers are introduced by substitution of hydrogen atoms with other functional groups. These functional groups are deuterium atoms, fluorine atoms, and methyl groups. Multiply deuterated species are compared. Then, results of singly deuterated derivatives are compared against results obtained from singly fluorinated and methylated derivatives. The analysis required the calculation of a total of 2433 Raman optical activity spectra. The method we propose for the comparison of the various Raman optical activity spectra is based on the total intensity of squared difference spectra. This allows a qualitative comparison of pairs of Raman optical activity spectra and the extraction of the pair of most similar Raman optical activity spectra for each group of stereoisomers. Different factors were accounted for, such as the spectral resolution (modeled by line broadening) and the range of vibrational frequencies considered. In the case of σ-[4]helicene all generated stereoisomers in each group can be distinguished from one another by Raman optical activity spectroscopy. For σ-[10]helicene this holds except for the lower one of the two resolutions considered. Here, the group consisting of stereoisomers with five chiral centers contains at least one pair of derivatives whose Raman optical activity spectra cannot be distinguished from one another. This indicates that an increased molecular size has a negative effect on the number of chiral centers which can be distinguished by Raman optical activity spectroscopy. Regarding the different substituents, stereoisomers are the better distinguishable in Raman optical activity spectroscopy, the more distinct the signals of the substituent are from the rest of the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.