Abstract

Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students’ attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.