Abstract

A rapid build-out of direct air capture (DAC), deployed in order to mitigate climate change, will require significant amounts of both low-carbon thermal and electrical energy. Firm low-carbon power resources, including nuclear, geothermal, or natural gas with carbon capture, which also will become more highly valued as variable renewable energy penetration increases, would be able to provide both heat and electricity for DAC. In this study, we examined the techno-economic synergy between a hypothetical DAC plant in the year 2030 and a nuclear small modular reactor, and determined two avenues for which this relationship could benefit the nuclear plant. First, we demonstrated that, under certain assumptions, selling a portion of its energy to a DAC facility allows the nuclear plant to take in 21% less revenue from selling electricity to wholesale markets than its projected levelized cost, and still break even. Second, after estimating a potential revenue stream, we showed that an integration with DAC allows for the nuclear plant's capital costs to be up to 35% higher than what would be required if only selling electricity to wholesale markets. This could enable the nuclear plant to operate economically even in the face of variable and decreasing wholesale electricity prices, and also could offer developers more financial certainty when planning a new project. Ultimately, this study shows that the need for low-carbon energy for DAC plants might incentivize the development of advanced nuclear plants and firm low-carbon resources more broadly.

Highlights

  • Many changes to current energy systems are required to reach net-zero carbon emissions throughout the world, though the pathways will vary by sector

  • We modeled a cogeneration facility that includes a direct air capture (DAC) system and a nuclear small modular reactor (SMR), and examined how this combination could improve the economics of the nuclear plant

  • In the second case in our results, we showed that if the SMR can incorporate this revenue from the DAC plant, it would be acceptable for its CAPEX to be 35% higher than if it were only developed for selling electricity to wholesale markets, or 4,069 $/kW as opposed to 3,006 $/kW

Read more

Summary

Introduction

Many changes to current energy systems are required to reach net-zero carbon emissions throughout the world, though the pathways will vary by sector. Negative-emissions technologies (NETs) could reduce the cost of reaching net-zero emissions (Bistline and Blanford, 2021); the Intergovernmental Panel on Climate Change (IPCC) has stated that any chance to keep the global average temperature increase from pre-industrial levels under 1.5◦C will require some utilization of NETs (IPCC, 2018). Direct air capture (DAC) with permanent CO2 storage is one NET that could make a significant impact. DAC is a process that captures CO2 directly from the atmosphere via an engineered system. The CO2 capture medium is regenerated to release a stream of nearly-pure CO2 that can be reused or permanently sequestered. The treated air is returned to the atmosphere. Despite its potential, commercializing and deploying DAC systems at a large scale may prove challenging (National Academies of Sciences Engineering Medicine, 2019)

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.