Abstract
We numerically explored the effects of long-term water level changes on biotic biomass and spatial distribution of fish in a large shallow lake. We calibrated Ecospace model (Ecopath with Ecosim modelling suite) with data from various functional groups (ranging from phytoplankton to piscivorous fish), and considered 14 different habitats. Two scenarios representing, respectively, a long-term water-level increase and decrease by 1 m were constructed and run for a period of thirty eight years (1979–2016). The results showed a very uneven spatial distribution of fish biomass in the lake, with the highest concentration in the southern basin. The 1 m decrease scenario caused a diminution in the biomass of all groups but piscivorous fish. The 1 m increase scenario saw a weak decrease in most species biomass. Consequently, in both scenarios, long-term water level changes would be generally detrimental to the lake biota. In the context of more frequent climate-induced hydrological fluctuations, we encourage the use of these simulations as effective tools for future prediction and assessment of ecosystem-based fisheries management and ecological status maintenance of shallow lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.