Abstract

Birds can experience localized forces against their bodies due to impact against solid objects (like a branch or another bird) or water (during plunge-dives or landings). In this study, we hypothesize that densely packed contour feathers around the bird body would spread localized impact force while diving and maintaining plumage integrity. To test the hypothesis, we performed experiments with individual feathers and elastic beams, and developed a theoretical model to determine the response of feathers during the dive. First, we used a micro computed tomography scanner to characterize the internal structure of the contour feather from a northern gannet and calculate Young's modulus of feathers sampled from different parts of the body. This value was found to be of the order of 109 Pa for feathers from chest and belly. Second, we model the feathers as elastic beams taking into account their pre-curvature and non-uniform cross-section. Results from our experiments with polycarbonate beams suggest that the interaction of feathers on the skin patch redistributes the force, thereby reducing the impact on any particular area of the skin. Finally, a theoretical model of multiple overlaying feathers is proposed to quantify the spreading of impact force on the skin of the bird body which shows that the pressure on the skin at the impact point can be reduced by as much as three times the pressure if feathers had been absent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.