Abstract

Lignocellulose constitutes the primary component of dietary fiber. We assessed how fermenting bamboo shoot residue with the medicinal white-rot fungus Inonotus obliquus affected the yield, composition, and functional attributes of dietary fiber by altering bamboo shoot residue lignocellulose's spatial structure and composition. I. obliquus secretes lignocellulolytic enzymes, which effectively enhance the degradation of holocellulose and lignin by 87.8% and 25.5%, respectively. Fermentation led to a more porous structure and reduced crystallinity. The yield of soluble dietary fiber increased from 5.1 g/100 g raw BSR to 7.1 g/100 g 9-day-fermented bamboo shoot residue. The total soluble sugar content of dietary fiber significantly increased from 9.2% to 13.8%, which improved the hydration, oil holding capacity, in vitro cholesterol, sodium cholate, and nitrite adsorption properties of dietary fiber from bamboo shoot residue. These findings confirm that I. obliquus biotransformation is promising for enhancing dietary fiber yield and quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.