Abstract
A recent paper reported highly accurate density functional theory results for atomization energies and dipole moments using a multiwavelet-based method and compared the results with those obtained by standard Gaussian basis sets of the aug-cc-pVXZ type. Typical errors with the large aug-cc-pV5Z basis set were in the 0.2 kcal/mol range with outliers displaying errors of ∼2 kcal/mol, and these results could be taken as an indication that Gaussian basis sets in general are unsuitable for achieving high accuracy. We show that by choosing Gaussian basis sets optimized for density functional theory, basis set methods are capable of achieving accuracy comparable to that from the multiwavelet approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.