Abstract

The charge-transfer chemical mechanism is responsible for altering the molecular spectral pattern and providing valuable insights into the properties of adsorbates. The impact of charge transfer becomes more pronounced in SERS spectra when CT states can gain intensity through vibronic coupling with high-intensity excitations. Experimental SERS spectra of diamino molecules, such as 4,4'-diaminostilbene (DAS) and 4,4'-diaminotolane (DAT), featuring bright CT transitions, have been compared to dipyridyl compounds, such as 1,2-bis(4-pyridyl) ethylene (BPE) and 1,2-di(4-pyridyl) acetylene (DPA), characterized by nearly dark CT excitations. This comparison aims to elucidate the effect of CT transitions on the presence of overtones and combination bands. We explain this distinction using Albrecht's formalism for resonance Raman spectroscopy within the framework of path integral time-dependent density functional theory considering the Herzberg-Teller corrections. It is worth noting that the energy gap between the highest occupied metallic orbital and the lowest unoccupied molecular orbital in diamino derivatives is noticeably smaller than in compounds featuring two pyridyl rings. The high-intensity SERS-CT spectra for diamino derivatives, primarily driven by the Albrecht A term, were acquired and used to elucidate the experimental observation of high-order modes with a significant Huang-Rhys factor. Conversely, the absolute intensity of SERS-CT for dipyridyl compounds is at least 106 times smaller than that for diamines, and the C term makes a significant contribution, explaining the silent overtones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call