Abstract

I review recent investigations on the electrical conductivity of the lithosphere and asthenosphere in Europe. The principal method in the reviewed studies is the magnetotelluric method, but in many cases other electromagnetic methods (e.g., magnetovariational profilings and geomagnetic depth soundings) have provided additional information on subsurface conductivity or have been the primary method. The review shows that the magnetotelluric method has been used, and is being used, in all kinds of environments and for many different processes shaping the crust and lithosphere. The crust is very heterogeneous, both with respect to the scale of conductive/resistive features and interpretations: research targets vary from Archaean palaeostructures to ongoing processes. The European database of the depth to the lithosphere-asthenosphere boundary (LAB) in Europe is updated, and a new map showing lateral variations of the depth of LAB is provided. The compilation shows that (1) the Phanerozoic European lithosphere, with considerable variations (45–150 km), is much thinner than the Precambrian European lithosphere, (2) the Trans-European Suture Zone is a major electrical border in Europe separating electrically (as well as geophysically and geologically in general) two quite different settings, (3) the thinnest lithosphere is found under the extensional Pannonian Basin (45–90 km), (4) in most of the East European Craton there are no indications of a high conductivity zone in upper mantle. In many regions there is no information at all on upper mantle conductivity, which calls for pan-European projects to operate arrays of simultaneously recording instruments with long recording periods (2–8 months) and dense spatial sampling (20–50 km).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.