Abstract

ABSTRACTThe effect of birth weight and childhood body mass index (BMI) on adolescents’ bone parameters is not established. The aim of this longitudinal, population‐based study was to investigate the association of birth weight, childhood BMI, and growth, with adolescent bone mass and bone density in a sample of 633 adolescents (48% girls) from The Tromsø Study: Fit Futures. This population‐based cohort study was conducted in 2010–2011 and 2012–2013 in Tromsø, Norway. Bone mineral content (BMC) and areal BMD (aBMD) were measured at total hip (TH) and total body (TB) by dual‐energy X‐ray absorptiometry (DXA) and converted to internal Z‐scores. Birth weight and childhood anthropometric measurements were retrospectively obtained from the Medical Birth Registry of Norway and childhood health records. Associations between birth weight, BMI, and growth were evaluated by fitting linear mixed models with repeated measures of BMC and aBMD at ages 15 to 17 and 18 to 20 years as the outcome. In crude analysis, a significant positive association (p < 0.05) with TB BMC was observed per 1 SD score increase in birth weight, observed in both sexes. Higher rate of length growth, conditioned on earlier size, from birth to age 2.5 years, and higher rate of weight gain from ages 6.0 to 16.5 years, conditioned on earlier size and concurrent height growth, revealed stronger associations with bone accrual at ages 15 to 20 years compared with other ages. Compared with being normal weight, overweight/obesity at age 16.5 years was associated with higher aBMD Z‐scores: β coefficient (95% confidence interval [CI]) of 0.78 (0.53, 1.03) and 1.08 (0.85, 1.31) in girls, 0.63 (0.42, 0.85) and 0.74 (0.54, 0.95) in boys at TH and TB, respectively. Similar associations were found for BMC. Being underweight was consistently negatively associated with bone parameters in adolescence. In conclusion, birth weight influences adolescent bone mass but less than later growth and BMI in childhood and adolescence. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research

Highlights

  • Osteoporotic fractures constitute an important public health problem worldwide.[1]

  • The dropout analysis showed no significant difference in mean values of the exposure variables or outcome variables at to Fit Futures 1 (TFF1), between those participating at TTF2, and those lost to follow-up

  • Sensitivity analyses run on a data set with no imputations and in a complete-case data set produced results similar to those presented. In this longitudinal population-based study of adolescents, we have explored associations between birth weight, childhood body mass index (BMI), and growth rate with Bone mineral content (BMC) and areal BMD (aBMD) at 15 to 20 years of age

Read more

Summary

Introduction

Osteoporotic fractures constitute an important public health problem worldwide.[1]. Peak bone mass is one of several determinants of adult bone strength.[2,3] Preventive strategies have mainly focused on reducing age-related bone loss and preventing fractures among the elderly. A combination of genetic, hormonal, environmental, and lifestyle factors influence skeletal development,(2,3,6,7)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.