Abstract

The hydrated electron (eaq-) is known via polarized transient hole-burning (pTHB) experiments to have a homogeneously broadened absorption spectrum. Here, we explore via quantum simulation how the pTHB spectroscopy of different eaq- models changes in the presence of electrolytes. The idea is that cation-eaq- pairing can break the local symmetry and, thus, induce persistent inhomogeneity. We find that a "hard" cavity model shows a modest increase in the pTHB recovery time in the presence of salt, while a "soft" cavity model remains homogeneously broadened independent of the salt concentration. We also explore the orientational anisotropy of a fully ab initio density functional theory-based model of the eaq-, which is strongly inhomogeneously broadened without salt and which becomes significantly more inhomogeneously broadened in the presence of salt. The results provide a direct prediction for experiments that can distinguish between different models and, thus, help pin down the hydration structure and dynamics of the eaq-.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call