Abstract

In the human intestine, target cells of enteropathogens differentiate during cell migration along the crypt-villus axis. We have recently provided evidence that intestinal cell differentiation up-regulates intestinal cell infection by the noninvasive enterotoxigenic Escherichia coli [5, 23]. Several enterovirulent bacteria can penetrate intestinal epithelial cells, which are normally nonphagocytic. To document the role of intestinal epithelial cell differentiation in the pathogenesis of enteroinvasive bacteria, we examined here the intestinal cell-association and cell-entry of Yersinia pseudotuberculosis as a function of cell differentiation. For this purpose we used the colon carcinoma Caco-2 cell line in culture, which provides the most useful tool for the study of intestinal epithelial cell differentiation, because of its unique ability to spontaneously differentiate upon reaching confluence in normal culture condition. We report here that the thermoregulated inv and ail loci of Y. pseudotuberculosis have distinct roles in infection of Caco-2 cells. The ail locus initiates the cell-association and the inv locus initiates both the cell-association and the cell-entry processes. Moreover, we observed that: (i) both the bacterial cell-association (ail) and the bacterial cell-invasion (inv) occur at subconfluence when the Caco-2 cells are undifferentiated, and (ii) these processes are arrested when the differentiation commences. Since the integrin-beta 1 heterodimers are involved in cell-entry of Y. pseudotuberculosis in several mammalian cells, we further examined which beta 1 integrin promotes bacterial cell-entry in Caco-2 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call