Abstract
Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using “science overlay maps” of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative—but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.