Abstract

The Rouse model with internal friction (RIF), a widely used theoretical framework to interpret the effects of internal friction on conformational transitions in biomolecules, is shown to be an approximate treatment that is based on preaveraging internal friction. By comparison with Brownian dynamics simulations of an exact coarse-grained model that incorporates fluctuations in internal friction, the accuracy of the preaveraged model predictions is examined both at and away from equilibrium. While the two models predict intrachain autocorrelations that approach each other for long enough chain segments, they differ in their predictions for shorter segments. Furthermore, the two models differ qualitatively in their predictions for the chain extension and viscosity in shear flow, which is taken to represent a prototypical out-of-equilibrium condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.